High-speed BiCMOS technology with a buried twin well structure
- 1 June 1987
- journal article
- Published by Institute of Electrical and Electronics Engineers (IEEE) in IEEE Transactions on Electron Devices
- Vol. 34 (6) , 1304-1310
- https://doi.org/10.1109/T-ED.1987.23085
Abstract
A buried twin well and polysilicon emitter structure is developed for high-speed BiCMOS VLSI's. A bipolar transistor of high cutoff frequency (fT= 4 GHz) and small size (500 µm2) has been fabricated on the same chip with a standard 2-µm CMOS, without degrading the device characteristics of the MOSFET. Latchup immunity is improved due to the low well resistance of the buried layer. The well triggering current is a 0.5-1.0 order of magnitude higher than that of a standard n-well CMOS. To evaluate the utility of this technology, a 15-stage ring oscillator of the 2NAND BiCMOS gate is fabricated. The gate has a 0.71-ns propagation delay time and 0.25-mW power dissipation at 0.85-pF loading capacitance and 4-MHz operation. Drive ability is 0.24 ns/pF, which is 2.5 times larger than that of the equal-area CMOS gate.Keywords
This publication has 0 references indexed in Scilit: