Hemocyte responses to implanted tissues inDrosophila melanogaster larvae

Abstract
At 26° C temperature-sensitivetu(1) Sz ts larvae ofDrosophila melanogaster develop melanotic tumors consisting of aberrant caudal adipose tissue encapsulated by precociously differentiated hemocytes (lamellocytes). Whentu-Sz ts larvae are grown at 18° C, lamellocytes are present but the caudal fat body surfaces remain normal and melanotic tumors do not develop (Rizki and Rizki, preceding paper). In this paper we demonstrate that the lamellocytes intu-Sz ts larvae at 18° C encapsulate implants of mechanically-damaged fat bodies and adipose cells devoid of basement membrane, while leaving host fat bodies or implanted fat bodies with intact basement membrane unencapsulated. Therefore, low temperature blocks melanotic tumor formation by normalizing the surfaces of the prospective tumor-forming sites intu-Sz ts. The discriminatory ability oftu-Sz ts lamellocytes was examined by challenging them with undamaged heterospecific tissues. Tissues from sibling species ofD. melanogaster were not encapsulated whereas tissues fromDrosophila species outside theD. melanogaster species subgroup were. Ultrastructural examination of encapsulated heterospecific tissues showed intact basement membrane, so we propose that distinction between “self” and “not self” by lamellocytes depends upon the molecular architecture of the basement membrane. In similar series of experiments usingD. virilis donor tissues inOre-R wild type larval hosts, fat bodies remained unencapsulated and imaginal disks metamorphosed. These studies suggest that continued presence of lamellocytes in the larval host is a prerequisite for encapsulation.