Expected Estimating Equations to Accommodate Covariate Measurement Error
- 1 September 2000
- journal article
- Published by Oxford University Press (OUP) in Journal of the Royal Statistical Society Series B: Statistical Methodology
- Vol. 62 (3) , 509-524
- https://doi.org/10.1111/1467-9868.00247
Abstract
Summary: Estimating equations which are not necessarily likelihood-based score equations are becoming increasingly popular for estimating regression model parameters. This paper is concerned with estimation based on general estimating equations when true covariate data are missing for all the study subjects, but surrogate or mismeasured covariates are available instead. The method is motivated by the covariate measurement error problem in marginal or partly conditional regression of longitudinal data. We propose to base estimation on the expectation of the complete data estimating equation conditioned on available data. The regression parameters and other nuisance parameters are estimated simultaneously by solving the resulting estimating equations. The expected estimating equation (EEE) estimator is equal to the maximum likelihood estimator if the complete data scores are likelihood scores and conditioning is with respect to all the available data. A pseudo-EEE estimator, which requires less computation, is also investigated. Asymptotic distribution theory is derived. Small sample simulations are conducted when the error process is an order 1 autoregressive model. Regression calibration is extended to this setting and compared with the EEE approach. We demonstrate the methods on data from a longitudinal study of the relationship between childhood growth and adult obesity.This publication has 0 references indexed in Scilit: