A Cosmic Ray Positron Anisotropy due to Two Middle-Aged, Nearby Pulsars?
Preprint
- 1 April 2008
Abstract
Geminga and B0656+14 are the closest pulsars with characteristic ages in the ran ge of 100 kyr to 1 Myr. They both have spindown powers of the order 3e34 erg/s at present. The winds of these pulsars had most probably powered pulsar wind nebulae (PWNe) that broke up less than about 100 kyr after the birth of the pulsars. Assuming that leptonic particles accelerated by the pulsars were confined in th e PWNe and were released into the interstellar medium (ISM) on breakup of the PW Ne, we show that, depending on the pulsar parameters, both pulsars make a non-ne gligible contribution to the local cosmic ray (CR) positron spectrum, and they m ay be the main contributors above several GeV. The relatively small angular dist ance between Geminga and B0656+14 thus implies an anisotropy in the local CR po sitron flux at these energies. We calculate the contribution of these pulsars to the locally observed CR electr on and positron spectra depending on the pulsar birth period and the magnitude o f the local CR diffusion coefficient. We further give an estimate of the expecte d anisotropy in the local CR positron flux. Our calculations show that within the framework of our model, the local CR posit ron spectrum imposes constraints on pulsar parameters for Geminga and B0656+14, notably the pulsar period at birth, and also the local interstellar diffusion co efficient for CR leptons.Keywords
All Related Versions
- Version 1, 2008-04-01, ArXiv
- Published version: The Astrophysical Journal, 678 (1), L39.
This publication has 0 references indexed in Scilit: