Abstract
Cancer susceptibility is often suspected in individuals presenting with cancers at an early age, with multiple primary cancers, or with a suggestive family history. The identification of the genetic basis for cancer susceptibility has important clinical implications for the prevention and early detection of associated neoplasms. However, genetic testing is expensive, and in many cases, mutations in cancer susceptibility genes are not identified. This stems from both technical limitations of commercial assays and limited knowledge regarding the genes that contribute to cancer susceptibility. Thus, a comprehensive, unbiased approach to identify mutations in genes contributing to cancer susceptibility is needed. We describe the use of whole-genome sequencing to identify a novel deletion in TP53 (NCBI Entrez Gene 7157) in the normal (skin) genome of an individual with early-onset breast and ovarian cancer who subsequently developed therapy-related acute myeloid leukemia (t-AML).