Laboratory tests and simulations of pulse shape discrimination (PSD) technique for background reduction in germanium gamma-ray detectors
- 18 October 1996
- proceedings article
- Published by SPIE-Intl Soc Optical Eng
- Vol. 2806, 483-492
- https://doi.org/10.1117/12.254020
Abstract
For actively shielded, narrow aperture germanium spectrometers at balloon or spacecraft altitudes, the beta decay of radio-active nuclei is the dominant source of background in the 0.2 to 2 MeV energy range. This component of the background is internal to the germanium detectors (GeDs) and results from the activation of Ge nuclei by cosmic ray secondaries. The sensitivity of GeD spectrometers can be improved by rejecting beta-decay events, which deposit energy at a single site in the detector, while retaining photon events, which are predominantly multiple site at these energies. Pulse shape discrimination (PSD) techniques can distinguish between single- and multiple-site events by analyzing the shape of GeDs' current pulses. Here we present results of laboratory tests of PSD with a newly developed narrow-inner-bore (0.6 cm diameter) coaxial GeD and compare them to numerical simulations.Keywords
This publication has 0 references indexed in Scilit: