Biochemical and genetic analysis of a mutant with altered alkaline phosphatase activity in Dictyostelium discoideum

Abstract
Alkaline phosphatase is one of several enzymes that accumulate in a temporally regulated sequence during the development of Dictyostelium discoideum. These enzymes can be used to monitor specific gene expression; moreover, isolation and analysis of mutations in the structural gene(s) can serve to indicate some of the essential steps in programmed synthesis and morphogenesis. A mutation (alpA) which affects the activity and substrate affinity of alkaline phosphatase was isolated in D discoideum using a procedure for screening large numbers of clones. Alkaline phosphatase activity at all stages of vegetative growth and development was altered by the mutation. Several physical properties of the enzyme from growing cells and developed cells were compared and found to be indistinguishable. It is likely that a single enzyme is responsible for the majority of alkaline phosphatase activity in growth and development. The mutation is coexpressed in diploids heterozygous for alpA and maps to linkage group III. One of the haploid segregants isolated from these diploids carries convenient markers on each of the six defined linkage groups and can be used for linkage analysis of other genetic loci.