Transmembrane Ion Channels Constructed of Cholic Acid Derivatives

Abstract
A new class of supramolecular transmembrane ion channels was prepared by linking two amphiphilic cholic acid methyl ethers through biscarbamate bonds to afford bis(7,12-dimethyl-24-carboxy-3-cholanyl)-N,N‘-xylylene dicarbamate 2 and bis[7,12-dimethyl-24-(N,N,N-trimethylethanaminium-2-carboxylate)-3-cholanyl]-N,N‘-xylylene dicarbamate dichloride 3. When incorporated into a planar bilayer membrane, both compounds showed stable (lasting 10 ms to10 s) single ion channel currents. Only limited numbers of relatively small conductances were characterized for these channels (5−20 pS for 2 and 5−10 pS for 3, 10 and 17 pS for 2, and 9 pS for 3 in particular). Both channels were cation selective, and permeability ratios of potassium cation to chloride anion were 17 and 7.9 for 2 and 3, respectively, reflecting the difference in ionic species of the headgroup. Both channels 2 and 3 showed significant potassium selectivity over sodium by a factor of 3.1 and 3.2, respectively. No Li+ currents were observed for 2, showing sharp discrimination between Na+ or K+.
Keywords