Extended superfamily of short alcohol‐polyol‐sugar dehydrogenases: structural similarities between glucose and ribitol dehydrogenases

Abstract
The recently determined primary structure of glucose dehydrogenase from Bacillus megaterium was scanned by computerized comparisons for similarities with known polyol and alcohol dehydrogenases. The results revealed a highly significant similarity between this glucose dehydrogenase and ribitol dehydrogenase from Klebsiella aerogenes. Sixty-one positions of the 262 in glucose dehydrogenase are identical between these two proteins (23% identity), fitting into a homology alignment for the complete polypeptide chains. The extent of similarity is equivalent to that between other highly divergent but clearly related dehydrogenases (two zinc-containing alcohol dehydrogenases, 25% sorbitol and zinc-containing alcohol dehydrogenases, 25%; ribitol and non-zinc-containing alcohol dehydrogenases, 20%), and suggests an ancestral relationship between glucose and ribitol dehydrogenases from different bactera. The similarities fit into a previously suggested evolutionary scheme comprising short and long alcohol and polyol dehydrogenases, and greatly extend the former group to one composed of non-zinc-containing alcohol-polyol-glucose dehydrogenases.