Measurable cardinals and a combinatorial principle of Jensen
- 1 December 1973
- journal article
- Published by Cambridge University Press (CUP) in The Journal of Symbolic Logic
- Vol. 38 (4) , 551-560
- https://doi.org/10.2307/2271980
Abstract
At the end of his paper [2], Silver shows how methods developed by Jensen and Solovay in order to prove results about the constructible universe L may be adapted to prove corresponding results for the universe L[μ], where μ is a normal measure on some uncountable cardinal ρ. In this paper we pursue this in greater depth. Jensen proved, in fact, much stronger results than those considered in [2], and we shall show that all of these carry over from L to L[μ], More precisely, we show that if V = L[μ] is assumed, then for any regular uncountable cardinal κ and any uncountable λ < κ, + (κ, λ) holds, and that + (κ, κ) holds just in the case κ is not ineffable. This result was proved to hold in L by Jensen, who first formulated the principles + (κ, λ).Our proof differs in detail from Jensen's, and at one point (in choosing the set B of + ) differs fundamentally from his argument. However, the fact remains that our argument is modelled closely upon Jensen's, and it should be made clear that in many parts it is a straightforward adaption of his proof to the L[μ] situation. It is regrettable that, at the time of our writing this, Jensen's proof still only exists in the rough, handwritten form of [1]; so we shall give our argument in some detail, even those parts which are merely “translations” of Jensen's original arguments.Keywords
This publication has 1 reference indexed in Scilit:
- Measurable Cardinals and Δ 1 3 Well-OrderingsAnnals of Mathematics, 1971