Abstract
The magnetization process of the S=1 and 1/2 kagome Heisenberg antiferromagnet is studied by means of the numerical exact diagonalization method. It is found that the magnetization curve at zero temperature has a plateau at 1/3 of the full magnetization. In the presence of $\sqrt{3} \times \sqrt{3}$ lattice distortion, this plateau is enhanced and eventually the ferrimagnetic state is realized. There also appear the minor plateaux above the main plateau. The physical origin of these phenomena is discussed.

This publication has 0 references indexed in Scilit: