Flow-invariant sets and differential inequalities in normed spaces†
- 1 January 1975
- journal article
- research article
- Published by Taylor & Francis in Applicable Analysis
- Vol. 5 (2) , 149-161
- https://doi.org/10.1080/00036817508839117
Abstract
A set M in a Banach space B is said to be flow-invariant with respect to the ordinary differential equation x(t)=f(t,x) (t real, xεB,f(t,x)εB), if for each solution x(i) of this equation x(0) ε M implies x(t) ε M for t >0. In this paper, several theorems on flow-invariance are given. These theorems on differential inequalities in ordered Banach spaces. In particular, they apply to the important case when the interior of the positive cone of the Banach space is empty. Finally it is shown that the basic assumption for the validity of a theorem on differential inequalities, namely the quasimonotonicity property as given by Volkmann [11], is equivalent to the tangent condition of Brezis [3]with respect to the positive cone.Keywords
This publication has 8 references indexed in Scilit:
- The Theorems of Bony and Brezis on Flow-Invariant SetsThe American Mathematical Monthly, 1972
- Some new aspects of the line method for parabolic differential equationsPublished by Springer Nature ,1972
- Gewöhnliche Differentialungleichungen mit quasimonoton wachsenden Funktionen in topologischen VektorräumenMathematische Zeitschrift, 1972
- Ordinary differential inequalities in ordered Banach spacesJournal of Differential Equations, 1971
- On a characterization of flow‐invariant setsCommunications on Pure and Applied Mathematics, 1970
- Gewöhnliche Differential-Ungleichungen im BanachraumArchiv der Mathematik, 1969
- Principe du maximum, inégalité de Harnack et unicité du problème de Cauchy pour les opérateurs elliptiques dégénérésAnnales de l'institut Fourier, 1969
- Die elementaren Differential‐ und Integralungleichungen mit einem allgemeinen UngleichungsbegriffMathematische Nachrichten, 1968