High Performance Poly(styrene-b-diene-b-styrene) Triblock Copolymers from a Hydrocarbon-Soluble and Additive-Free Dicarbanionic Initiator

Abstract
A new hydrocarbon-soluble (additive-free) dicarbanionic organolithium initiator, obtained by a simple halogen−lithium exchange reaction (Gilman's reaction) from a diarylhalide containing a side C15 alkyl chain, has been designed and used to initiate the anionic polymerization of butadiene and styrene. The dilithiated species formed afford well-defined poly(styrene-b-butadiene-b-styrene) (SBS) triblock copolymers with a high percentage of 1,4-microstructure polybutadiene (91%) and excellent mechanical properties, such as ultimate tensile strength higher than 30 MPa and elongation at a break of 1000%. This represents a breakthrough in the synthesis of SBS polymers, one of the most used thermoplastic elastomers.

This publication has 29 references indexed in Scilit: