Quasicrystals
- 1 May 1987
- journal article
- research article
- Published by Taylor & Francis in Contemporary Physics
- Vol. 28 (3) , 219-239
- https://doi.org/10.1080/00107518708219071
Abstract
The recent discovery of a metallic alloy that behaves like a crystal, but which is characterized by a ‘forbidden’ fivefold or icosahedral symmetry, has led to the redefinition of the crystalline state. These ‘quasi-crystals’ have since become the subject of intense study and debate. In this paper we describe the remarkable properties of quasicrystals and show how their structure can be described with the aid of concepts developed in other disciplines: the golden number, Penrose tiling, and the theory of irrational numbers.Keywords
This publication has 27 references indexed in Scilit:
- Pauling's model not universally acceptedNature, 1986
- Symmetry, stability, and elastic properties of icosahedral incommensurate crystalsPhysical Review B, 1985
- Indexing problems in quasicrystal diffractionPhysical Review B, 1985
- Quasicrystal with One-Dimensional Translational Symmetry and a Tenfold Rotation AxisPhysical Review Letters, 1985
- Quasiperiodic PatternsPhysical Review Letters, 1985
- Comment on "Quasicrystals: A New Class of Ordered Structures"Physical Review Letters, 1985
- Phenomenological Theory of Icosahedral Incommensurate ("Quasiperiodic") Order in Mn-Al AlloysPhysical Review Letters, 1985
- Algebraic theory of Penrose's non-periodic tilings of the plane. IIndagationes Mathematicae, 1981
- Zur Theorie der Fastperiodischen Funktionen: II. Zusammenhang der fastperiodischen Funktionen mit Funktionen von unendlich vielen Variabeln; gleichmässige Approximation durch trigonometrische SummenActa Mathematica, 1925
- Zur theorie der fast periodischen funktionen: I. Eine verallgemeinerung der theorie der fourierreihenActa Mathematica, 1925