A Nuclear DNA Phylogenetic Perspective on the Evolution of Echolocation and Historical Biogeography of Extant Bats (Chiroptera)
Open Access
- 1 June 2005
- journal article
- research article
- Published by Oxford University Press (OUP) in Molecular Biology and Evolution
- Vol. 22 (9) , 1869-1886
- https://doi.org/10.1093/molbev/msi180
Abstract
Bats (Order Chiroptera), the only mammals capable of powered flight and sophisticated laryngeal echolocation, represent one of the most species-rich and ubiquitous orders of mammals. However, phylogenetic relationships within this group are poorly resolved. A robust evolutionary tree of Chiroptera is essential for evaluating the phylogeny of echolocation within Chiroptera, as well as for understanding their biogeographical history. We generated 4 kb of sequence data from portions of four novel nuclear intron markers for multiple representatives of 17 of the 18 recognized extant bat families, as well as the putative bat family Miniopteridae. Three echolocation-call characters were examined by mapping them onto the combined topology: (1) high-duty cycle versus low-duty cycle, (2) high-intensity versus low-intensity call emission, and (3) oral versus nasal emission. Echolocation seems to be highly convergent, and the mapping of echolocation-call design onto our phylogeny does not appear to resolve the question of whether echolocation had a single or two origins. Fossil taxa may also provide insight into the evolution of bats; we therefore evaluate 195 morphological characters in light of our nuclear DNA phylogeny. All but 24 of the morphological characters were found to be homoplasious when mapped onto the supermatrix topology, while the remaining characters provided insufficient information to reconstruct the placement of the fossil bat taxa with respect to extant families. However, a morphological synapomorphy characterizing the Rhinolophoidea was identified and is suggestive of a separate origin of echolocation in this clade. Dispersal-Vicariance analysis together with a relaxed Bayesian clock were used to evaluate possible biogeographic scenarios that could account for the current distribution pattern of extant bat families. Africa was reconstructed as the center of origin of modern-day bat families.Keywords
This publication has 112 references indexed in Scilit:
- PHYLOGENETIC RELATIONSHIPS AMONG RECENT CHIROPTERAN FAMILIES AND THE IMPORTANCE OF CHOOSING APPROPRIATE OUT-GROUP TAXAJournal of Mammalogy, 2004
- MOLECULAR PHYLOGENETICS AND TAXONOMIC REVIEW OF NOCTILIONOID AND VESPERTILIONOID BATS (CHIROPTERA: YANGOCHIROPTERA)Journal of Mammalogy, 2003
- Molecular Systematics of Bats of the Genus Myotis (Vespertilionidae) Suggests Deterministic Ecomorphological ConvergencesMolecular Phylogenetics and Evolution, 2001
- EVALUATING MONOPHYLY OF NATALOIDEA (CHIROPTERA) WITH MITOCHONDRIAL DNA SEQUENCESJournal of Mammalogy, 2001
- T-coffee: a novel method for fast and accurate multiple sequence alignment 1 1Edited by J. ThorntonJournal of Molecular Biology, 2000
- FURTHER EVIDENCE FOR INCLUSION OF THE NEW ZEALAND SHORT-TAILED BAT (MYSTACINA TUBERCULATA) WITHIN NOCTILIONOIDEAJournal of Mammalogy, 2000
- The diet of bats from Southeastern Brazil: the relation to echolocation and foraging behaviourRevista Brasileira de Zoologia, 1999
- Cephalometric correlates of echolocation in the chiroptera: II. Fetal developmentJournal of Morphology, 1995
- First Eocene bat from AustraliaJournal of Vertebrate Paleontology, 1994
- FIELD RECORDINGS OF ECHOLOCATION AND SOCIAL SIGNALS FROM THE GLEANING BATMYOTIS SEPTENTRIONALISBioacoustics, 1993