Abstract
In implementing the finite-difference time-domain (FDTD) method on materials which are dispersive or nonlinear, the relationship between the flux density and the electric field can be the most complicated part of the problem. Because the FDTD method is a sampled time-domain method, this relationship can be can be looked upon as a digital filtering problem. The Z transform is typically used in digital filtering and signal processing problems. The paper illustrates the use of the Z transform in implementing the FDTD method where complicated dispersive or nonlinear materials are involved.

This publication has 15 references indexed in Scilit: