Hot-electron-induced interface state generation in n-channel MOSFET's at 77 K

Abstract
Hot-electron-induced degradation in n-channel Si MOSFET's as a result of stress voltages applied at 77 K was studied. The devices were stressed at 77 K for 48 h with a drain voltage of 5 V and a gate voltage corresponding to that at which maximum substrate current was measured. Comparison of pre-stress and post-stress electrical characteristics for forward and for inverse mode operation at room temperature and at 77 K indicate that the observed degradation was due to the generation of hot-electron-induced acceptor interface states at the drain end of the device approximately 0.09 eV below the Si conduction band edge. No trapped charge resulting from hot-electron injection into the gate oxide was observed. The charge associated with the filled interface states had no observable effect on effective channel electron mobility at room temperature, and reduced that at 77 K by no more than 25 percent of the pre-stress value. Operation of CMOS inverters in either logic state (OFF, ON) resulted in no degradation of either device. Operation in a switching mode at 77 K did result in degradation of the n-channel device but not the p-channel FET. The observed degradation is thought to be correlated with the substrate current generated during the switching transient.

This publication has 37 references indexed in Scilit: