Role of optical properties of metallic mirrors in microcavity structures

Abstract
In thin metal films the phase change on reflection of incident light is dependent on the wavelength, the angle of incidence, the type of metal, and the metal thickness. These properties have been exploited to improve the performance of planar metal mirror microcavities. We model substantial alteration of peak emission wavelength and linewidth with mirror thickness. This allows the tuning of the cavity resonance wavelength by variation of metal mirror thickness. The dependence of the phase change on wavelength and angle of incidence can also be used to suppress the angular dependence of the cavity resonance wavelength. These effects are observed in silver-mirrored cavities containing the polymers poly(p-phenylene vinylene), (PPV), and a cyano-substituted derivative of PPV, MEH-CN-PPV.