Low levels of intraspecific genetic variation at a rapidly evolving chloroplast dna locus in North American duckweeds (Lemnaceae)

Abstract
Although most previous studies on chloroplast (cp) DNA variation in plants have concentrated on systematics and evolution above the species level, intraspecific variation in cpDNA is common and has provided useful insights into population‐level evolutionary processes. Polymerase chain reaction methods were used to examine restriction site and sequence variation in the chloroplast rpLI6 gene within and among populations of duckweed species (Spirodela and Lemna) from the southern and eastern United States. To our knowledge, the rpL16 region has not previously been used to investigate cpDNA variation in nature. While considerable restriction site and sequence variation were detected among species, no variation was found within populations of either of the two species (S. punctata and L. minor) selected for sequence analysis, and S. punctata showed no interpopulational variation. Two cpDNA haplotypes were identified in L. minor, with one haplotype restricted to three sites in Louisiana and the other found in all other populations sampled. This paucity of variation cannot be readily explained as the result of a low mutation rate. In general, group II introns appear to be subject to very little functional constraint, and extensive sequence differences have been found between species in the chloroplast rpL16 intron in particular. However, factors such as historical range expansions and contractions, founding effects, fluctuations in local population size, and natural selection may play a role in reducing cpDNA sequence variability in these species.