Geometric structure of the generic static traversable wormhole throat
Preprint
- 30 April 1997
Abstract
Traversable wormholes have traditionally been viewed as intrinsically topological entities in some multiply connected spacetime. Here, we show that topology is too limited a tool to accurately characterize a generic traversable wormhole: in general one needs geometric information to detect the presence of a wormhole, or more precisely to locate the wormhole throat. For an arbitrary static spacetime we shall define the wormhole throat in terms of a 2-dimensional constant-time hypersurface of minimal area. (Zero trace for the extrinsic curvature plus a "flare-out" condition.) This enables us to severely constrain the geometry of spacetime at the wormhole throat and to derive generalized theorems regarding violations of the energy conditions-theorems that do not involve geodesic averaging but nevertheless apply to situations much more general than the spherically symmetric Morris-Thorne traversable wormhole. [For example: the null energy condition (NEC), when suitably weighted and integrated over the wormhole throat, must be violated.] The major technical limitation of the current approach is that we work in a static spacetime-this is already a quite rich and complicated system.Keywords
All Related Versions
- Version 1, 1997-04-30, ArXiv
- Published version: Physical Review D, 56 (8), 4745.
This publication has 0 references indexed in Scilit: