Abstract
Excision of 7-bromomethylbenz(a)anthracene (7-BMBA)-DNA adducts from exponentially growing cultures of Chinese hamster V79-379A cells followed logarithmic kinetics with a half of approximately 20 hrs. Post-treatment incubation in the presence of a sub-toxic concentration of caffeine markedly reduced this loss. Caffeine brought about a concomitant increase in overall DNA synthetic rate in treated exponential cultures. Excision in stationary, non-DNA-replicating cultures, was slower and caffeine did not affect this reduced rate of excision. These findings lend support to a previous proposition that the caffeine-induced inhibition of elongation of nascent DNA on a template containing chemical lesions results in an interference with the excision repair mechanism that removes these lesions.

This publication has 18 references indexed in Scilit: