Abstract
1-Thiobenzoylnaphthalene (TBN), known for its pericyclization reaction from the lowest excited singlet state (S1), has been subjected to nanosecond and picosecond laser flash photolysis studies. The two major transients observed in the course of nanosecond laser pulse excitation are (i) the short-lived triplet characterized by two absorption maxima (400–410 and 740–750 nm) and submicrosecond intrinsic lifetimes (80–130 ns) and (ii) a relatively long-lived species (λmax = 520 nm and τ = 220–240 ns). Various triplet-related photophysical data of TBN, including self-quenching and bimolecular quenching rate constants, have been determined. The existence of a photochemical path from S1 manifests itself in low intersystem crossing quantum yields, particularly in the polar/hydrogen-bonding solvent, methanol. From the build-up of the triplet under picosecond excitation into S1 the lifetime of the latter is estimated to be ≤ 50 ps (in benzene). The fast intrinsic decay of TBN triplet is attributable to facile intra- and intermolecular photochemistry. The 520 nm transient species could not be definitively assigned, except that it is neither a triplet nor a triplet-derived product and that it arises via photochemistry from S1. Keywords: laser flash photolysis, triplet, transients, absorption maxima, lifetimes, quenching rate constants, photochemistry, 1-thiobenzoylnaphthalenes.

This publication has 0 references indexed in Scilit: