Coupling of ETB Endothelin Receptor to Mitogen‐Activated Protein Kinase Stimulation and DNA Synthesis in Primary Cultures of Rat Astrocytes
- 1 February 1996
- journal article
- Published by Wiley in Journal of Neurochemistry
- Vol. 66 (2) , 459-465
- https://doi.org/10.1046/j.1471-4159.1996.66020459.x
Abstract
Astrocytes have been shown to express endothelin (ET) receptors functionally coupled, via different heterotrimeric G proteins, to several intracellular pathways. To assess the relative contribution of each subtype in the astrocytic responses to ET-1, effects of BQ123, an antagonist selective for the ET receptor subtype A (ETA-R), and IRL1620, an agonist selective for the ET receptor subtype B (ETB-R), were investigated in primary cultures of rat astrocytes. Binding experiments indicated that the ETB-R is the predominant subtype in these cells. Inhibition of forskolin-stimulated cyclic AMP production was observed under. ETB-R stimulation. Bordetella pertussis toxin (PTX) pretreatment completely abolished this effect, indicating that this pathway is coupled to the ETB-R via Gi protein. Increases of tyrosine phosphorylation of cellular proteins, stimulation of mitogen-activated protein kinase (MAPK), and DNA synthesis were also found to be mediated by the ETB-R, but through PTX-insensitive G protein. IRL1620-induced MAPK activation involved the adapter proteins Shc and Grb2 and the serine/threonine kinase Raf-1. This study reveals that the various effects of ET-1 in astrocytes are mediated by the ETB-R, which couples to multiple signaling pathways including the MAPK cascade.Keywords
This publication has 0 references indexed in Scilit: