Derivatives of the Triazoloquinazoline Adenosine Antagonist (CGS 15943) Having High Potency at the Human A2Band A3Receptor Subtypes
- 18 June 1998
- journal article
- Published by American Chemical Society (ACS) in Journal of Medicinal Chemistry
- Vol. 41 (15) , 2835-2845
- https://doi.org/10.1021/jm980094b
Abstract
The adenosine antagonist 9-chloro-2-(2-furanyl)[1,2,4]triazolo[1, 5-c]quinazolin-5-amine (CGS 15943) binds nonselectively to human A1, A2A, and A3 receptors with high affinity. Acylated derivatives and one alkyl derivative of the 5-amino group and other modifications were prepared in an effort to enhance A2B or A3 subtype potency. In general, distal modifications of the N5-substituent were highly modulatory to potency and selectivity at adenosine receptors, as determined in radioligand binding assays at rat brain A1 and A2A receptors and at recombinant human A3 receptors. In Chinese hamster ovary cells stably transfected with human A2B receptor cDNA, inhibition of agonist-induced cyclic AMP production was measured. An N5-(2-iodophenyl)acetyl derivative was highly selective for A2A receptors. An (R)-N5-alpha-methyl(phenylacetyl) derivative was the most potent derivative at A3 receptors, with a Ki value of 0.36 nM. A bulky N5-diphenylacetyl derivative, 13, displayed a Ki value of 0. 59 nM at human A3 receptors and was moderately selective for that subtype. Thus, a large, nondiscriminating hydrophobic region occurs in the A3 receptor in proximity to the N5-substituent. A series of straight-chain N5-aminoalkylacyl derivatives demonstrated that for A2B receptors the optimal chain length occurs with three methylene groups, i.e., the N5-gamma-aminobutyryl derivative 27 which had a pA2 value of 8.0 but was not selective for A2B receptors. At A1, A2A, and A3 receptors however the optimum occurs with four methylene groups. An N5-pivaloyl derivative, which was less potent than 27 at A1, A2A, and A3 receptors, retained moderate potency at A2B receptors. A molecular model of the 27-A2B receptor complex based on the structure of rhodopsin utilizing a "cross-docking" procedure was developed in order to visualize the environment of the ligand binding site.This publication has 43 references indexed in Scilit:
- A New Approach to Docking in the β2-Adrenergic Receptor That Exploits the Domain Structure of G-Protein-Coupled ReceptorsJournal of Medicinal Chemistry, 1997
- A1-Adenosine receptor antagonistsExpert Opinion on Therapeutic Patents, 1997
- Selective adenosine A3 receptor stimulation reduces ischemic myocardial injury in the rabbit heartCardiovascular Research, 1997
- Neuropharmacology of the adenosine A2A receptorsDrug Development Research, 1996
- A2 adenosine receptors: their presence and neuromodulatory role in the central nervous systemGeneral Pharmacology: The Vascular System, 1996
- Induction of Apoptosis in HL-60 Human Promyelocytic Leukemia Cells by Adenosine A3Receptor Agonists: Volume219,Number 3 (1996), pages 904–910Biochemical and Biophysical Research Communications, 1996
- Cloning and Chromosomal Localization of the Human A2b Adenosine Receptor Gene (ADORA2B) and Its PseudogeneGenomics, 1995
- Projection structure of rhodopsinNature, 1993
- Macromodel—an integrated software system for modeling organic and bioorganic molecules using molecular mechanicsJournal of Computational Chemistry, 1990
- A simple method for displaying the hydropathic character of a proteinJournal of Molecular Biology, 1982