Auditory and visual interactions in postural stabilization

Abstract
The interaction and subsequent interpretation of sensory feedback from different modalities are important determinants in the regulation of balance. The importance of sound in this respect is not, as yet, fully understood. The aim of the present study was to determine the interaction of specific auditory frequencies and vision on postural sway behaviour. The frequencies employed represent the geometrical mean of 23 of the 25 critical bandwidths of sound, each presented at two loudness levels (70 and 90 phones). Postural sway was recorded using a biomechanical measuring platform. As expected vision had a highly significant stabilizing effect on most sway parameters. The frequency of the sound, however, appeared to influence the regulation of anteroposterior sway, while increasing loudness tended to increase mediolateral sway. At some frequencies the sound appeared to compensate for the lack of visual feedback. The interaction of sound and vision, particularly in combinations that lead to increased sway behaviour, may have implications in the occurrence, and possible prevention, of industrial accidents.