Mosaic retroposon insertion patterns in placental mammals
- 4 March 2009
- journal article
- Published by Cold Spring Harbor Laboratory in Genome Research
- Vol. 19 (5) , 868-875
- https://doi.org/10.1101/gr.090647.108
Abstract
One and a half centuries after Charles Darwin and Alfred Russel Wallace outlined our current understanding of evolution, a new scientific era is dawning that enables direct observations of genetic variation. However, pure sequence-based molecular attempts to resolve the basal origin of placental mammals have so far resulted only in apparently conflicting hypotheses. By contrast, in the mammalian genomes where they were highly active, the insertion of retroelements and their comparative insertion patterns constitute a neutral, virtually homoplasy-free archive of evolutionary histories. The “presence” of a retroelement at an orthologous genomic position in two species indicates their common ancestry in contrast to its “absence” in more distant species. To resolve the placental origin controversy we extracted ∼2 million potentially phylogenetically informative, retroposon-containing loci from representatives of the major placental mammalian lineages and found highly significant evidence challenging all current single hypotheses of their basal origin. The Exafroplacentalia hypothesis (Afrotheria as the sister group to all remaining placentals) is significantly supported by five retroposon insertions, the Epitheria hypothesis (Xenarthra as the sister group to all remaining placentals) by nine insertion patterns, and the Atlantogenata hypothesis (a monophyletic clade comprising Xenarthra and Afrotheria as the sister group to Boreotheria comprising all remaining placentals) by eight insertion patterns. These findings provide significant support for a “soft” polytomy of the major mammalian clades. Ancestral successive hybridization events and/or incomplete lineage sorting associated with short speciation intervals are viable explanations for the mosaic retroposon insertion patterns of recent placental mammals and for the futile search for a clear root dichotomy.Keywords
This publication has 41 references indexed in Scilit:
- Genome analysis of the platypus reveals unique signatures of evolutionNature, 2008
- Confirming the Phylogeny of Mammals by Use of Large Comparative Sequence Data SetsMolecular Biology and Evolution, 2008
- Resolution among major placental mammal interordinal relationships with genome data imply that speciation influenced their earliest radiationsBMC Ecology and Evolution, 2008
- Rooting the eutherian tree: the power and pitfalls of phylogenomicsGenome Biology, 2007
- Genomics, biogeography, and the diversification of placental mammalsProceedings of the National Academy of Sciences, 2007
- Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot projectNature, 2007
- Multiple molecular evidences for a living mammalian fossilProceedings of the National Academy of Sciences, 2007
- Using genomic data to unravel the root of the placental mammal phylogenyGenome Research, 2007
- Pegasoferae, an unexpected mammalian clade revealed by tracking ancient retroposon insertionsProceedings of the National Academy of Sciences, 2006
- Retroposed Elements as Archives for the Evolutionary History of Placental MammalsPLoS Biology, 2006