A Short Fe-Fe Distance in Peroxodiferric Ferritin: Control of Fe Substrate Versus Cofactor Decay?

Abstract
The reaction of oxygen with protein diiron sites is important in bioorganic syntheses and biomineralization. An unusually short Fe-Fe distance of 2.53 angstroms was found in the diiron (μ-1,2 peroxodiferric) intermediate that forms in the early steps of ferritin biomineralization. This distance suggests the presence of a unique triply bridged structure. The Fe-Fe distances in the μ-1,2 peroxodiferric complexes that were characterized previously are much longer (3.1 to 4.0 angstroms). The 2.53 angstrom Fe-Fe distance requires a small Fe-O-O angle (∼106° to 107°). This geometry should favor decay of the peroxodiferric complex by the release of H2O2 and μ-oxo or μ-hydroxo diferric biomineral precursors rather than by oxidation of the organic substrate. Geometrical differences may thus explain how diiron sites can function either as a substrate (in ferritin biomineralization) or as a cofactor (in O2 activation).

This publication has 38 references indexed in Scilit: