Abstract
A set of approximate equations for pseudoadiabatic thermodynamics is developed. The equations are derived by neglecting the entropy of water vapor and then compensating for this error by using a constant (but relatively large) value for the latent heat of vaporization. The subsequent formulations for entropy and equivalent potential temperature have errors that are comparable to those of previous formulations, but their simple form makes them attractive for use in theoretical studies. It is also shown that, if the latent heat of vaporization is replaced with a constant value, an optimal value should be chosen to minimize error; a value of 2.555 × 106 J kg−1 is found in tests herein. Abstract A set of approximate equations for pseudoadiabatic thermodynamics is developed. The equations are derived by neglecting the entropy of water vapor and then compensating for this error by using a constant (but relatively large) value for the latent heat of vaporization. The subsequent formulations for entropy and equivalent potential temperature have errors that are comparable to those of previous formulations, but their simple form makes them attractive for use in theoretical studies. It is also shown that, if the latent heat of vaporization is replaced with a constant value, an optimal value should be chosen to minimize error; a value of 2.555 × 106 J kg−1 is found in tests herein.

This publication has 11 references indexed in Scilit: