Protection against inhaled oxidants through scavenging of oxidized lipids by macrophage receptors MARCO and SR-AI/II

Abstract
Alveolar macrophages (AMs) express the class A scavenger receptors (SRAs) macrophage receptor with collagenous structure (MARCO) and scavenger receptor AI/II (SRA-I/II), which recognize oxidized lipids and provide innate defense against inhaled pathogens and particles. Increased MARCO expression in lungs of ozone-resistant mice suggested an additional role protecting against inhaled oxidants. After ozone exposure, MARCO–/– mice showed greater lung injury than did MARCO+/+ mice. Ozone is known to generate oxidized, proinflammatory lipids in lung lining fluid, such as 5β,6β-epoxycholesterol (β-epoxide) and 1-palmitoyl-2-(9′-oxo-nonanoyl)-glycerophosphocholine (PON-GPC). Intratracheal instillation of either lipid caused substantial neutrophil influx in MARCO–/– mice, but had no effect in MARCO+/+ mice. Normal AMs showed greater uptake in vitro of β-epoxide compared with MARCO–/– AMs, consistent with SRA function in binding oxidized lipids. SR-AI/II–/– mice showed similar enhanced acute lung inflammation after β-epoxide or another inhaled oxidant (aerosolized leachate of residual oil fly ash). In contrast, subacute ozone exposure did not enhance inflammation in SR-AI/II–/– versus SR-AI/II+/+ mice, reflecting increased AM expression of MARCO. These data identify what we believe to be a novel function for AM SRAs in decreasing pulmonary inflammation after oxidant inhalation by scavenging proinflammatory oxidized lipids from lung lining fluids.