A human somatostatin receptor (SSTR3), located on chromosome 22, displays preferential affinity for somatostatin‐14 like peptides
- 26 April 1993
- journal article
- research article
- Published by Wiley in FEBS Letters
- Vol. 321 (2-3) , 279-284
- https://doi.org/10.1016/0014-5793(93)80124-d
Abstract
We report here on the cloning of a human intronless gene encoding a member of the G-protein linked somatostatin (SST) receptor subfamily, termed SSTR3. Based on the deduced amino acid sequence, this gene encodes a 418 amino acid protein displaying sequence similarity, particularly within putative transmembrane domains, with the recently cloned human SSTR1 (62%), SSTR2 (64%) and SSTR4 (58%) receptors. Membranes prepared from COS-7 cells transiently expressing the human SSTR3 gene bound [125I]Leu8,d-Trp22,-Tyr22 SST-28 in a saturable manner with high affinity (~200 pM) and with rank order of potency (d-Trp8 SST-14 > SST-14 > SMS-201-995 > SST-28) indicative of a somatostatin-14 selective receptor. The pharmacological profile of the expressed human SSTR3 receptor is similar but not identical to that reported for the rat homolog [(1992) J. Biol. Chem. 267,20422] where the peptide selectivity is SST-28 ≧ SST-14 XXX SMS-201-995. Northern blot analysis reveals the presence of an SSTR3 mRNA species of ~5 kb in various regions of the monkey brain, including the frontal cortex, cerebellum, medulla, amygdala, with little or no SSTR3 mRNA detectable in brain regions such as the striatum, hippocampus, and olfactory tubercle. The SSTR3 receptor gene maps to human chromosome 22. The existence of at least four distinct human genes encoding somatostatin-14 selective receptors with diverse pharmacological specificities may help to account for some of the multiple biological actions of somatostatin under normal and pathological conditions.Keywords
This publication has 22 references indexed in Scilit:
- Molecular biology of somatostatin receptorsTrends in Neurosciences, 1993
- Photoaffinity labeling of the somatostatin receptor: identification of molecular subtypesEndocrinology, 1992
- Mutagenesis of the beta2-Adrenergic Receptor: How Structure Elucidates FunctionAnnual Review of Pharmacology and Toxicology, 1992
- Cloning of the gene for a human dopamine D5 receptor with higher affinity for dopamine than D1Nature, 1991
- A profusion of controls.The Journal of cell biology, 1988
- Two adjacent cysteine residues in the C‐terminal cytoplasmic fragment of bovine rhodopsin are palmitylatedFEBS Letters, 1988
- Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomesCell, 1986
- SomatostatinNew England Journal of Medicine, 1983
- SomatostatinNew England Journal of Medicine, 1983
- Hypothalamic Polypeptide That Inhibits the Secretion of Immunoreactive Pituitary Growth HormoneScience, 1973