Purification and characterization of human H-ras proteins expressed in Escherichia coli.
Open Access
- 1 May 1985
- journal article
- research article
- Published by Taylor & Francis in Molecular and Cellular Biology
- Vol. 5 (5) , 1015-1024
- https://doi.org/10.1128/mcb.5.5.1015
Abstract
The full-length normal and T24 mutant human H-ras proteins and two truncated derivatives of the T24 mutant were expressed efficiently in Escherichia coli. The proteins accumulated to 1 to 5% of total cellular protein, and each was specifically recognized by anti-ras monoclonal antibodies. The two full-length proteins as well as a carboxyl-terminal truncated derivative (deleted for 23 amino acid residues) were soluble upon cell lysis and were purified to 90% homogeneity without the use of denaturants. In contrast, an amino-terminal truncated ras derivative (deleted for 22 amino acid residues) required treatment with urea for its solubilization. The guanine nucleotide binding activity of these four proteins was assessed by a combination of ligand binding on proteins blots, immunoprecipitation, and standard filter binding procedures. The full-length proteins showed similar binding kinetics and a stoichiometry approaching 1 mol of GTP bound per mol of protein. The showed similar binding kinetics and a stoichiometry approaching 1 mol of GTP bound per mol of protein. The carboxyl-terminal truncated protein also bound GTP, but to a reduced extent, whereas the amino-terminal truncated protein did not have binding activity. Apparently, the carboxyl-terminal domain of ras, although important for transforming function, does not play a critical role in GTP binding.This publication has 48 references indexed in Scilit:
- High-Level Expression in Escherichia coli of Enzymatically Active Harvey Murine Sarcoma Virus p21
ras
ProteinScience, 1983
- Acquisition of transforming properties by alternative point mutations within c-bas/has human proto-oncogeneNature, 1983
- A point mutation is responsible for the acquisition of transforming properties by the T24 human bladder carcinoma oncogeneNature, 1982
- Mechanism of activation of a human oncogeneNature, 1982
- T24 human bladder carcinoma oncogene is an activated form of the normal human homologue of BALB- and Harvey-MSV transforming genesNature, 1982
- Human EJ bladder carcinoma oncogene is homologue of Harvey sarcoma virus ras geneNature, 1982
- The transforming proteins of Rous sarcoma virus, Harvey sarcoma virus and Abelson virus contain tightly bound lipidPublished by Elsevier ,1982
- Localization of the src gene product of the Harvey strain of MSV to plasma membrane of transformed cells by electron microscopic immunocytochemistryCell, 1980
- A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye BindingAnalytical Biochemistry, 1976
- Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4Nature, 1970