MMP Inhibition in Abdominal Aortic Aneurysms: Rationale for a Prospective Randomized Clinical Trial
- 1 June 1999
- journal article
- Published by Wiley in Annals of the New York Academy of Sciences
- Vol. 878 (1) , 159-178
- https://doi.org/10.1111/j.1749-6632.1999.tb07682.x
Abstract
Abdominal aortic aneurysms (AAAs) represent a chronic degenerative condition associated with a life‐threatening risk of rupture. The evolution of AAAs is thought to involve the progressive degradation of aortic wall elastin and collagen, and increased local production of several matrix metalloproteinases (MMPs) has been implicated in this process. We have previously shown that tetracycline derivatives and other MMP inhibitors suppress aneurysm development in experimental animal models of AAA. Doxycycline also reduces the expression of MMP‐2 and MMP‐9 by human vascular wall cell types and by AAA tissue explantsin vitro. To determine whether this strategy might have a role in the clinical management of small AAA, we examined the effect of doxycycline on aortic wall MMP expressionin vivo. Patients were treated with doxycycline (100 mg p.o. bid) for 7 days prior to elective AAA repair, and aneurysm tissues were obtained at the time of surgery (n= 5). Tissues obtained from an equal number of untreated patients with AAA were used for comparison. By reverse transcription‐polymerase chain reaction and Southern blot analysis, MMP‐2 and MMP‐9 were both found to be abundantly expressed in the aneurysm wall. Preoperative treatment with doxycycline was associated with a 3‐fold reduction in aortic wall expression of MMP‐2 and a 4‐fold reduction in MMP‐9 (p< 0.05compared to untreated AAA). These preliminary results suggest that even short‐term treatment with doxycycline can suppress MMP expression within human AAA tissues. Given its pleiotropic effects as an MMP inhibitor, doxycycline may be particularly effective in suppressing aortic wall connective tissue degradation. While it remains to be determined whether MMP inhibition will have a clinically significant impact on aneurysm expansion, it is expected that this question can be resolved by a properly designed prospective randomized clinical trial.Keywords
This publication has 79 references indexed in Scilit:
- Expression and localization of macrophage elastase (matrix metalloproteinase-12) in abdominal aortic aneurysms.Journal of Clinical Investigation, 1998
- Cellular Components and Features of Immune Response in Abdominal Aortic AneurysmsaAnnals of the New York Academy of Sciences, 1996
- Human Vascular Smooth Muscle Cell–Monocyte Interactions and Metalloproteinase Secretion in CultureArteriosclerosis, Thrombosis, and Vascular Biology, 1995
- Inflammation and Matrix Metalloproteinases in the Enlarging Abdominal Aortic AneurysmArteriosclerosis, Thrombosis, and Vascular Biology, 1995
- In Situ Localization and Quantification of mRNA for 92-kD Type IV Collagenase and Its Inhibitor in Aneurysmal, Occlusive, and Normal AortaArteriosclerosis, Thrombosis, and Vascular Biology, 1995
- Doxycycline and Chemically Modified Tetracyclines Inhibit Gelatinase A (MMP‐2) Gene Expression in Human Skin KeratinocytesAnnals of the New York Academy of Sciences, 1994
- Elastin content, cross-links, and mRNA in normal and aneurysmal human aortaJournal of Vascular Surgery, 1992
- Prognosis of Abdominal Aortic AneurysmsNew England Journal of Medicine, 1989
- Sonographische Verlaufsbeobachtungen von BauchaortenaneurysmenJournal of Molecular Medicine, 1984
- Role of medial lamellar architecture in the pathogenesis of aortic aneurysmsJournal of Vascular Surgery, 1984