Observing the motion of electrons in atoms and molecules

Abstract
The dynamic electronic structure of atoms and molecules can be directly observed by means of the (e, 2e) reaction, which measures the distribution of energies and momenta of two electrons in coincidence after a knockout reaction initiated by an electron beam of known momentum incident on a molecular gas target. The molecular state for each event is identified by the electron separation energy. The recoil momentum for each event is known from the difference of measured initial and final momenta. It has been verified that values of this momentum are equal under suitable conditions to the momentum of the electron in the target immediately before knockout. Thus the spherically-averaged electron momentum distribution for each molecular orbital is measured. This is directly related to molecular orbitals calculated by the methods of quantum chemistry. Properties obtained by this method for different types of molecules are discussed.

This publication has 15 references indexed in Scilit: