Survival Characteristics of Airborne Human Coronavirus 229E

Abstract
Summary The survival of airborne human coronavirus 229E (HCV/229E) was studied under different conditions of temperature (20 ± 1 °C and 6 ± 1 °C) and low (30 ± 5%), medium (50 ± 5%) or high (80 ± 5%) relative humidities (RH). At 20 ± 1 °C, aerosolized HCV/229E was found to survive best at 50% RH with a half-life of 67.33 ± 8.24 h while at 30% RH the virus half-life was 26.76 ± 6.21 h. At 50% RH nearly 20% infectious virus was still detectable at 6 days. High RH at 20 ± 1 °C, on the other hand, was found to be the least favourable to the survival of aerosolized virus and under these conditions the virus half-life was only about 3 h; no virus could be detected after 24 h in aerosol. At 6 ± 1 °C, in either 50% or 30% RH conditions, the survival of HCV/229E was significantly enhanced, with the decay pattern essentially similar to that seen at 20 ± 1 °C. At low temperature and high RH (80%), however, the survival pattern was completely reversed, with the HCV/229E half-life increasing to 86.01 ± 5.28 h, nearly 30 times that found at 20 ± 1 °C and high RH. Although optimal survival at 6 °C still occurred at 50% RH, the pronounced stabilizing effect of low temperature on the survival of HCV/229E at high RH indicates that the role of the environment on the survival of viruses in air may be more complex and significant than previously thought.