FKBP12-rapamycin-associated protein associates with mitochondria and senses osmotic stress via mitochondrial dysfunction
- 2 April 2002
- journal article
- Published by Proceedings of the National Academy of Sciences in Proceedings of the National Academy of Sciences
- Vol. 99 (7) , 4319-4324
- https://doi.org/10.1073/pnas.261702698
Abstract
FKBP12-rapamycin associated protein (FRAP, also known as mTOR or RAFT) is the founding member of the phosphatidylinositol kinase-related kinase family and functions as a sensor of physiological signals that regulate cell growth. Signals integrated by FRAP include nutrients, cAMP levels, and osmotic stress, and cellular processes affected by FRAP include transcription, translation, and autophagy. The mechanisms underlying the integration of such diverse signals by FRAP are largely unknown. Recently, FRAP has been reported to be regulated by mitochondrial dysfunction and depletion of ATP levels. Here we show that exposure of cells to hyperosmotic conditions (and to glucose-deficient growth medium) results in rapid and reversible dissipation of the mitochondrial proton gradient. These results suggest that the ability of FRAP to mediate osmotic stress response (and glucose deprivation response) is by means of an intermediate mitochondrial dysfunction. We also show that in addition to cytosolic FRAP a large portion of FRAP associates with the mitochondrial outer membrane. The results support the existence of a stress-sensing module consisting of mitochondria and mitochondrial outer membrane-associated FRAP. This module allows the cell to integrate a variety of stress signals that affect mitochondrial function and regulate a growth checkpoint involving p70 S6 kinase.Keywords
This publication has 15 references indexed in Scilit:
- Mammalian TOR: A Homeostatic ATP SensorScience, 2001
- Differential Activation of Protein Kinase B and p70S6K by Glucose and Insulin-like Growth Factor 1 in Pancreatic β-Cells (INS-1)Journal of Biological Chemistry, 2001
- Metabolic Regulation by Leucine of Translation Initiation Through the mTOR-Signaling Pathway by Pancreatic β-CellsDiabetes, 2001
- 4E-BP1 and S6K1: translational integration sites for nutritional and hormonal information in muscleAmerican Journal of Physiology-Endocrinology and Metabolism, 2000
- TOR, a Central Controller of Cell GrowthCell, 2000
- FKBP12-Rapamycin-associated Protein (FRAP) Autophosphorylates at Serine 2481 under Translationally Repressive ConditionsJournal of Biological Chemistry, 2000
- Osmotic Stress Inhibits p70/85 S6 Kinase through Activation of a Protein PhosphataseJournal of Biological Chemistry, 1999
- Structural and functional analysis of pp70S6k.Proceedings of the National Academy of Sciences, 1995
- Control of p70 S6 kinase by kinase activity of FRAP in vivoNature, 1995
- [29] Mitochondrial membrane potential monitored by JC-1 dyePublished by Elsevier ,1995