Ki‐67 labeling in postmitotic cells defines different Ki‐67 pathways within the 2c compartment

Abstract
Simultaneous quantification of DNA and Ki-67 proliferation-associated antigen was performed using fluorescence image cytometry. In the MCF-7 cell line, the Ki-67 antigen content increases during the cell cycle, and its intranuclear distribution pattern varies. Quantitative evolution of Ki-67 content as a function of nuclear area makes it possible to define several pathways followed by cells going through the 2c compartment. 1) In some cells, the amount of Ki-67 antigen remains constant during G1 (Ki-67 stable pathway), and a characteristic speckled pattern can be observed. 2) In the larger fraction of cells analyzed, there is a postmitotic decrease in the Ki-67 (Ki-67 decrease pathway) content. In this pathway, labeling is located in the nucleoplasm in small nuclei, is located in nucleoli in intermediate-sized nuclei, and is absent from larger nuclei (G0). A progressive increase in Ki-67 content (Ki-67 increase pathway) was observed from intermediate-sized nuclei to S phase nuclei. From these results, we hypothesize that the Ki-67 stable pathway is the G1 phase of newly formed cells going directly to S phase in local optimal conditions of growth and that Ki-67 decrease pathway and Ki-67 increase pathway correspond to cells whose progression to S phase is regulated by extracellular factors.