An entire function which has wandering domains
- 1 September 1976
- journal article
- research article
- Published by Cambridge University Press (CUP) in Journal of the Australian Mathematical Society
- Vol. 22 (2) , 173-176
- https://doi.org/10.1017/s1446788700015287
Abstract
Let f(z) denote a rational or entire function of the complex variable z and fn(z), n = 1,2, …, the n−th iterate of f. Provided f is not rational of order 0 or 1, the set of those points where {fn(z)} forms a normal family is a proper subset of the plane and is invariant under the map z → f(z). A component G of is a wandering domain of f if fn(G)∩fn(G) = Ø for all k ≧ 1, n ≧ 1, k ≠ n. The paper contains the construction of a transcendental entire function which has wandering domains.Keywords
This publication has 4 references indexed in Scilit:
- ON THE PROBLEM OF CLASSIFICATION OF POLYNOMIAL ENDOMORPHISMS OF THE PLANEMathematics of the USSR-Sbornik, 1969
- Multiply connected domains of normality in iteration theoryMathematische Zeitschrift, 1963
- Sur l'itération des fonctions transcendantes EntièresActa Mathematica, 1926
- Sur les équations fonctionnellesBulletin de la Société Mathématiques de France, 1919