Relative expression of the human epithelial Na+ channel subunits in normal and cystic fibrosis airways

Abstract
The availability of the newly cloned subunits (alpha, beta, gamma) of the epithelial Na+ channel (ENaC) permits molecular studies of the pathogenesis of the abnormal Na+ transport rates of cystic fibrosis (CF) airway epithelia. Northern analyses of airway epithelia showed that both normal and CF airway epithelia express ENaC subunit mRNAs in a ratio of alpha > beta > gamma. In situ hybridization studies revealed expression of all three ENaC subunits in the superficial epithelium and the alpha- and beta-subunits in the gland ductular and acinar epithelium of both normal and CF airways. Ribonuclease protection assays revealed that the steady-state levels of alpha-, beta-, and gamma-ENaC mRNAs were similar in CF and normal airway superficial epithelia. These findings indicate that 1) Na+ transport defects in CF airways disease may be expressed in glandular acinar and ductal epithelium as well as superficial epithelium, and 2) the molecular pathogenesis of Na+ hyperabsorption in CF airways does not reflect increased levels of Na+ channel mRNAs, and probably number, but reflects an absence of the normal inhibitory regulation of Na+ channels by CF transmembrane conductance regulator proteins.