Metabolic activation of 1,2-dibromo-3-chloropropane to mutagenic metabolites: detection and mechanism of formation of (Z)- and (E)-2-chloro-3-(bromomethyl) oxirane

Abstract
1,2-Dibromo-3-chloropropane (DBCP), a haloalkane nematocide and soil fumigant, is metabolically activated to chemically reactive species that are direct-acting mutagens in a Salmonella typhimurium TA 100 test system. Studies in vitro with rat liver microsomes indicated that oxidation at carbon 3 resulted in the formation of an unstable gem-chlorohydrin that rearranged with elimination of hydrogen bromide to form (Z)-2-chloro-3-(bromomethyl)oxirane [(Z)-CBPO] and (E)-2-chloro-3-(bromomethyl)oxirane [(E)-CBPO]. Gas chromatography-mass spectrometry (GC-MS) with positive ion chemical ionization (CI) was employed to identify (Z)-CBPO and (E)-CBPO by comparison of characteristic fragment ions in their CI mass spectra with those observed for authentic standards. Quantitative GC-MS methodology was exploited to quantitate the rate of formation of (Z)-CBPO and (E)-CBPO from DBCP and analogues of DBCP specifically deuterated at carbon 1 and carbon 3. The rate of formation of Z- and E-isomers of CBPO was 31 and 33 pmol/(min-mg of protein), respectively, from DBCP; substitution with deuterium at carbon 1 increased the rate of epoxide formation by 50%, whereas CBPO formation could not be detected from a substrate labeled with deuterium at carbon 3. Both epoxides were directly acting mutagens to S. typhimurium TA 100. (Z)-CBPO caused approximately twice as many his+ revertants/nmol compared to (E)-CBPO. Oxidation of DBCP resulted in the formation of a bifunctional alkylating agent, 1-bromo-3-chloroacetone, presumably via the intermediacy of an unstable gem-bromohydrin. 1-Bromo-3-chloroacetone was identified from an electron impact mass spectrum that displayed fragment ions arising from loss of chloromethyl and bromomethyl functionalities consistent with the formation of the 2-keto metabolite. The formation of these three newly discovered electrophilic metabolites by cytochrome P-450 oxidation of DBCP contributes to the bacterial mutagenesis of DBCP and may contribute to the incidence of DBCP-induced carcinogenesis.