Bound-to-continuum intersubband photoconductivity of self-assembled InAs quantum dots in modulation-doped heterostructures

Abstract
We have designed and fabricated a quantum dot infrared photodetector which utilizes the lateral transport of photoexcited carriers in the modulation-doped AlGaAs/GaAs two-dimensional (2D) channels. A broad photocurrent signal has been observed in the photon energy range of 100–300 meV due to the bound-to-continuum intersubband absorption of normal incidence radiation in the self-assembled InAs quantum dots. A peak responsivity was as high as 4.7 A/W. The high responsivity is realized mainly by a high mobility and a long lifetime of photoexcited carriers in the modulation-doped 2D channels. Furthermore, it is found that the observed photosensitivity survives up to 190 K.