Identification and characterization of a monocarboxylate transporter (MCT1) in pig and human colon: its potential to transport l‐lactate as well as butyrate
- 1 December 1998
- journal article
- Published by Wiley in The Journal of Physiology
- Vol. 513 (3) , 719-732
- https://doi.org/10.1111/j.1469-7793.1998.719ba.x
Abstract
1. Oligonucleotide primers based on the human heart monocarboxylate transporter (MCT1) cDNA sequence were used to isolate a 544 bp cDNA product from human colonic RNA by reverse transcription-polymerase chain reaction (RT-PCR). The sequence of the RT-PCR product was identical to that of human heart MCT1. Northern blot analysis using the RT-PCR product indicated the presence of a single transcript of 3.3 kb in mRNA isolated from both human and pig colonic tissues. Western blot analysis using an antibody to human MCT1 identified a specific protein with an apparent molecular mass of 40 kDa in purified and well-characterized human and pig colonic lumenal membrane vesicles (LMV). 2. Properties of the colonic lumenal membrane L-lactate transporter were studied by the uptake of L-[U-14C]lactate into human and pig colonic LMV. L-Lactate uptake was stimulated in the presence of an outward-directed anion gradient at an extravesicular pH of 5.5. Transport of L-lactate into anion-loaded colonic LMV appeared to be via a proton-activated, anion exchange mechanism. 3. L-Lactate uptake was inhibited by pyruvate, butyrate, propionate and acetate, but not by Cl- and SO4(2-). The uptake of L-lactate was inhibited by phloretin, mercurials and alpha-cyano-4-hydroxycinnamic acid (4-CHC), but not by the stilbene anion exchange inhibitors, 4,4'-diisothiocyanostilbene-2, 2'-disulphonic acid (DIDS) and 4-acetamido-4'-isothiocyanostilbene-2, 2'-disulphonic acid (SITS). 4. The results indicate the presence of a MCT1 protein on the lumenal membrane of the colon that is involved in the transport of L-lactate as well as butyrate across the colonic lumenal membrane. Western blot analysis showed that the abundance of this protein decreases in lumenal membrane fractions isolated from colonic carcinomas compared with that detected in the normal healthy colonic tissue.Keywords
This publication has 54 references indexed in Scilit:
- Cloning and sequencing of the monocarboxylate transporter from mouse Ehrlich Lettré tumour cell confirms its identity as MCT1 and demonstrates that glycosylation is not required for MCT1 functionBiochimica et Biophysica Acta (BBA) - Biomembranes, 1996
- The Kinetics, Substrate, and Inhibitor Specificity of the Monocarboxylate (Lactate) Transporter of Rat Liver Cells Determined Using the Fluorescent Intracellular pH Indicator, 2′,7′-Bis(carboxyethyl)-5(6)-carboxyfluoresceinPublished by Elsevier ,1996
- cDNA Cloning and Functional Characterization of Rat Intestinal Monocarboxylate TransporterBiochemical and Biophysical Research Communications, 1995
- Participation of a Proton-Cotransporter, MCT1, in the Intestinal Transport of Monocarboxylic AcidsBiochemical and Biophysical Research Communications, 1995
- cDNA cloning of MCT1, a monocarboxylate transporter from rat skeletal muscleBiochimica et Biophysica Acta (BBA) - Biomembranes, 1995
- cDNA Cloning of the Human Monocarboxylate Transporter 1 and Chromosomal Localization of the SLC16A1 Locus to 1p13.2-p12Genomics, 1994
- Phosphate transport in intestinal brush-border membraneJournal of Bioenergetics and Biomembranes, 1988
- Export of proteins from oocytes of Xenopus laevisCell, 1979
- The mechanism of lactate transport in human erythrocytesThe Journal of Membrane Biology, 1978