Abstract
To clarify the manner by which erythropoietin (EP), stem cell factor (SCF), or insulin-like growth factor I (IGF-I) regulate erythropoiesis, apoptosis of human erythroid progenitor cells was investigated. Human burst-forming units-erythroid (BFU-E) partially purified from peripheral blood were cultured for 6 days to generate erythroid colony-forming cells (ECFC), which consist mainly of colony-forming units-erythroid (CFU-E). The cells were labeled with [3H]thymidine, incubated in serum-free liquid media, at 37°C, for 16 h, and the pattern of DNA breakdown was analyzed by agarose gel electrophoresis. When these cells were incubated without EP, 70% of the total cellular DNA was broken down into DNA fragments of less than 5 kilobases and nuclear condensation and fragmentation, characteristic of apoptosis, were evident. While EP greatly reduced the amount of DNA breakdown to 23%, SCF and IGF-I each reduced the amount of DNA breakdown to 38–46% and, when added together, to 24%. Dose-response experiments with SCF and IGF-I showed a dose-dependent reduction in DNA fragmentation at concentrations that stimulate colony formation in serum-free semisolid cultures. Finally, assays of ECFC performed by the plasma clot method, after serum-free liquid culture, at 37°C, for 16 h, demonstrated marked protection of erythroid colony-forming capacity by SCF or IGF-I in the absence of EP, as well as by EP itself. These data indicate that human erythroid progenitor cells undergo apoptosis which is reduced by SCF and IGF-I as well as EP and suggest that the control of apoptosis by each of these factors has a prominent role in the regulation of erythropoiesis.