Low Reynolds-Number Flow in the Vicinity of Axisymmetric Constrictions

Abstract
Numerical solutions of the two-dimensional, Navier-Stokes equations are presented for boundary conditions corresponding to the laminar flow of Newtonian and non-Newtonian fluids in a round tube with axisymmetric constrictions. The influence of Reynolds number, blockage diameter ratio and length on the velocity components, streamlines, local shear stress and pressure drop are quantified and, in the case of the first two, shown to be large. The non-Newtonian stress-strain relationship corresponds to that for blood flowing in venules and results in an increased recirculation length and larger regions of high shear stress.

This publication has 13 references indexed in Scilit: