Abstract
A power-law relation is derived between the Stanton number and the Reynolds number, expressing the law of heat transfer for a wall adjacent to a region of turbulent separated flow. The derivation is based on Prandtl's (1945) proposal for the laws of dissipation, diffusion and generation of turbulent kinetic energy. The constants appearing in these laws are determined by reference to experimental data for the hydrodynamic properties of the constant-stress and the linear-stress layers.The agreement between the resulting predictions and the experimental data of other workers is sufficiently good to suggest that the actual mechanism of heat transfer from separated flows has much in common with that which is postulated. Closer agreement can be expected only after the present one-dimensional analysis has been superseded by a two-dimensional one.