Full Abstraction for PCF

Abstract
An intensional model for the programming language PCF is described, in which the types of PCF are interpreted by games, and the terms by certain "history-free" strategies. This model is shown to capture definability in PCF. More precisely, every compact strategy in the model is definable in a certain simple extension of PCF. We then introduce an intrinsic preorder on strategies, and show that it satisfies some striking properties, such that the intrinsic preorder on function types coincides with the pointwise preorder. We then obtain an order-extensional fully abstract model of PCF by quotienting the intensional model by the intrinsic preorder. This is the first syntax-independent description of the fully abstract model for PCF. (Hyland and Ong have obtained very similar results by a somewhat different route, independently and at the same time). We then consider the effective version of our model, and prove a Universality Theorem: every element of the effective extensional model is definable in PCF. Equivalently, every recursive strategy is definable up to observational equivalence.

This publication has 0 references indexed in Scilit: