AN ALGORITHM FOR TEMPERATURE-DEPENDENT GROWTH RATE SIMULATION

Abstract
With the current advances in insect population modelling, the need for more accurate simulation of temperature-dependent growth rates has become vital. The day-degree concept, with its linear temperature–rate relationship, has not been adequate for simulation of field populations under highly variable temperature conditions. Similarly, several of the non-linear relationships proposed in the past (Janisch’s catenary, parabola) have also been inadequate. All of these relationships produce large errors at temperature extremes.This paper presents a comparison of various functions which have been used for developmental time estimation and an algorithm for a sigmoid function which can be used in simulations having either a calendar or a physiological time base. Validation of the algorithm is presented for three insect species.