Extracting the hierarchical organization of complex systems
Preprint
- 11 May 2007
Abstract
Extracting understanding from the growing ``sea'' of biological and socio-economic data is one of the most pressing scientific challenges facing us. Here, we introduce and validate an unsupervised method that is able to accurately extract the hierarchical organization of complex biological, social, and technological networks. We define an ensemble of hierarchically nested random graphs, which we use to validate the method. We then apply our method to real-world networks, including the air-transportation network, an electronic circuit, an email exchange network, and metabolic networks. We find that our method enables us to obtain an accurate multi-scale descriptions of a complex system.Keywords
All Related Versions
This publication has 0 references indexed in Scilit: