Noradrenaline Release from Streptolysin O‐Permeated Rat Cortical Synaptosomes: Effects of Calcium, Phorbol Esters, Protein Kinase Inhibitors, and Antibodies to the Neuron‐Specific Protein Kinase C Substrate B‐50 (GAP‐43)

Abstract
We studied the molecular mechanism of noradrenaline release from the presynaptic terminal and the involvement of the protein kinase C substrate B-50 (GAP-43) in this process. To gain access to the interior of the presynaptic terminal, we searched for conditions to permeate rat brain synaptosomes by the bacterial toxin streptolysin O. A crude synaptosomal/mitochondrial preparation was preloaded with [3H]noradrenaline. After permeation with 0.8 IU/ml streptolysin O, noradrenaline efflux could be induced in a concentration-dependent manner by elevating the free Ca2+ concentration from 10(-8) to 10(-5) M. Efflux of the cytosolic marker protein lactate dehydrogenase was not affected by this increase in Ca2+. Ca2(+)-induced efflux of noradrenaline was largely dependent on the presence of exogenous ATP. Changing the Na+/K+ ratio in the buffer did not affect Ca2(+)-induced noradrenaline release. Release of noradrenaline could also be evoked by phorbol esters, indicating the involvement of protein kinase C. Ca2(+)- and phorbol ester-induced release were not additive at higher phorbol ester concentrations (greater than 10(-7) M). We compared the sensitivities of Ca2(+)- and phorbol ester-induced release of noradrenaline to the protein kinase inhibitors H-7 and polymyxin B and to antibodies raised against synaptic protein kinase C substrate B-50. Ca2(+)-induced release was inhibited by B-50 antibodies and polymyxin B, but not by H-7; phorbol ester-induced release was inhibited by polymyxin B and by H-7, but only marginally by antibodies to B-50.(ABSTRACT TRUNCATED AT 250 WORDS)

This publication has 54 references indexed in Scilit: