Upregulated miR-146a expression in peripheral blood mononuclear cells from rheumatoid arthritis patients
Top Cited Papers
Open Access
- 29 August 2008
- journal article
- Published by Springer Nature in Arthritis Research & Therapy
- Vol. 10 (4) , R101
- https://doi.org/10.1186/ar2493
Abstract
Introduction: MicroRNAs are small noncoding RNA molecules that negatively regulate gene expression via degradation or translational repression of their targeted mRNAs. It is known that aberrant microRNA expression can play important roles in cancer, but the role of microRNAs in autoimmune diseases is only beginning to emerge. In this study, the expression of selected microRNAs is examined in rheumatoid arthritis. Methods: Total RNA was isolated from peripheral blood mononuclear cells obtained from patients with rheumatoid arthritis, and healthy and disease control individuals, and the expression of miR-146a, miR-155, miR-132, miR-16, and microRNA let-7a was analyzed using quantitative real-time PCR. Results: Rheumatoid arthritis peripheral blood mononuclear cells exhibited between 1.8-fold and 2.6-fold increases in miR-146a, miR-155, miR-132, and miR-16 expression, whereas let-7a expression was not significantly different compared with healthy control individuals. In addition, two targets of miR-146a, namely tumor necrosis factor receptor-associated factor 6 (TRAF6) and IL-1 receptor-associated kinase 1 (IRAK-1), were similarly expressed between rheumatoid arthritis patients and control individuals, despite increased expression of miR-146a in patients with rheumatoid arthritis. Repression of TRAF6 and/or IRAK-1 in THP-1 cells resulted in up to an 86% reduction in tumor necrosis factor-α production, implicating that normal miR-146a function is critical for the regulation of tumor necrosis factor-α production. Conclusions: Recent studies have shown that synovial tissue and synovial fibroblasts from patients with rheumatoid arthritis exhibit increased expression of certain microRNAs. Our data thus demonstrate that microRNA expression in rheumatoid arthritis peripheral blood mononuclear cells mimics that of synovial tissue/fibroblasts. The increased microRNA expression in rheumatoid arthritis patients is potentially useful as a marker for disease diagnosis, progression, or treatment efficacy, but this will require confirmation using a large and well defined cohort. Our data also suggest a possible mechanism contributing to rheumatoid arthritis pathogenesis, whereby miR-146a expression is increased but unable to properly function, leading to prolonged tumor necrosis factor-α production in patients with rheumatoid arthritis.Keywords
This publication has 28 references indexed in Scilit:
- Micromanagement of the immune system by microRNAsNature Reviews Immunology, 2008
- MicroRNAsThe Cancer Journal, 2008
- New therapies for treatment of rheumatoid arthritisThe Lancet, 2007
- Conserved Seed Pairing, Often Flanked by Adenosines, Indicates that Thousands of Human Genes are MicroRNA TargetsCell, 2005
- The Microprocessor complex mediates the genesis of microRNAsNature, 2004
- Processing of primary microRNAs by the Microprocessor complexNature, 2004
- Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAsRNA, 2004
- MicroRNA genes are transcribed by RNA polymerase IIThe EMBO Journal, 2004
- Infliximab and Methotrexate in the Treatment of Rheumatoid ArthritisNew England Journal of Medicine, 2000
- Treatment of rheumatoid arthritis with recombinant human interleukin-1 receptor antagonistArthritis & Rheumatism, 1998