Processing, correlating, and interpreting converted shear waves from borehole data in southern Alberta

Abstract
Borehole measurements coupled with phase information from Zoeppritz equation modeling has assisted in accurate correlation between a VSP converted S-wave section and both the surface and VSP P-wave sections from southern Alberta. For the most part, both the character and polarities of the sections agree; however, there are some differences. Some reflections are stronger and more distinct on the S-wave section than on the P-wave section. Spectral analysis of the time‐domain upgoing P-wave and S-wave energy shows that the frequency content of the S-waves is comparable to the P-waves. Thus, the slower velocity S-waves have a shorter wavelenght and provide better vertical resolution of some interfaces. Other upgoing S-wave modes can interfere with the P‐SV mode and contribute to the differences between the P- and S-wave sections. The match between P-wave and S-wave velocities ([Formula: see text] and [Formula: see text]), determined from VSP traveltime inversion and the full‐waveform sonic log, is best in the Paleozoic carbonate section; there is some discrepancy in Cretaceous sandstone intervals. A basal salt unit in the Paleozoic Beaverhill Lake formation has a VSP‐determined [Formula: see text] ratio of 1.97, suggesting that salt can be distinguished from carbonates using both P-wave and S-wave velocity information in this region.

This publication has 0 references indexed in Scilit: